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ABSTRACT:
Marine soundscapes provide the opportunity to non-invasively learn about, monitor, and conserve ecosystems. Some

fishes produce sound in chorus, often in association with mating, and there is much to learn about fish choruses and

the species producing them. Manually analyzing years of acoustic data is increasingly unfeasible, and is especially

challenging with fish chorus, as multiple fish choruses can co-occur in time and frequency and can overlap with ves-

sel noise and other transient sounds. This study proposes an unsupervised automated method, called SoundScape

Learning (SSL), to separate fish chorus from soundscape using an integrated technique that makes use of randomized

robust principal component analysis (RRPCA), unsupervised clustering, and a neural network. SSL was applied to

14 recording locations off southern and central California and was able to detect a single fish chorus of interest in

5.3 yrs of acoustically diverse soundscapes. Through application of SSL, the chorus of interest was found to be noc-

turnal, increased in intensity at sunset and sunrise, and was seasonally present from late Spring to late Fall. Further

application of SSL will improve understanding of fish behavior, essential habitat, species distribution, and potential

human and climate change impacts, and thus allow for protection of vulnerable fish species.
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I. INTRODUCTION

Soundscapes provide a unique opportunity to non-

invasively learn about, monitor, and conserve ecosystems.

In the ocean, where space is vast and light reduces rapidly

with depth, sound attenuates slowly, so many organisms pri-

marily use sound to interact with their environment and with

others (Kasumyan, 2008). Biotic, anthropogenic, and abiotic

sounds all contribute to the marine soundscape, and our

understanding of how organisms utilize marine soundscapes

continues to expand (McKenna et al., 2021). Passive acous-

tic monitoring (PAM) is a cost-effective tool to record and

study soundscapes (Lindseth and Lobel, 2018).

Fish are important contributors to marine soundscapes,

and sound production in fishes is likely far more widespread

than is currently known. Globally, of the more than 34 000

fish species, at least 989 are currently known to produce

sounds, usually while defending territory, feeding, and

spawning, and likely many more are soniferous (Winn et al.,
1964; Bass and Ladich, 2008; Looby et al., 2022). While

there is a large and growing body of literature on fish sound

production, 96% of the 34 000 extant fish species lack pub-

lished examinations of sound production (Looby et al.,
2023; Rice et al., 2022). Sound production evolved approxi-

mately 33 times in Actinopterygii and is ancestral for radia-

tions that compromise nearly 29 000 species, and thus sound

production in actinopterygians is likely far more widespread

than currently known (Rice et al., 2022). Individual fish

calls are typically low frequency (generally 40–1000 Hz),

short duration, consist of broadband pulses or tones, often

with multiple-frequency harmonics, are usually produced at

night, dawn, and dusk, and show great diversity among spe-

cies (Kasumyan, 2008). This diversity allows for the dis-

crimination of sounds among fish species, and from sounds

made by other marine organisms (Carrico et al., 2019).

While aggregating, some fish produce sounds together in a

“chorus,” continuously increasing sound levels in specific

frequency bands with few, if any, distinguishable individual

calls (Greenfield and Shaw, 1983; Pagniello et al., 2019).

Fish chorusing can reach high enough sound levels to domi-

nate the local soundscape (McKenna et al., 2021), can last

for multiple hours, and for some species (i.e., oyster toad-

fish, Opsanus tau) can even be heard from land (Kasumyan,

2008). Chorusing is not unique to fish, as birds, frogs,

insects, and Baleen whales are also known to chorus to

attract mates and to intimidate competitors (Lobel, 1992;
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Gerhardt, 1994; Au et al., 2000; Dawson et al., 2001;

Thomas et al., 2002; Catchpole and Slater, 2003; Bruni

et al., 2014; Party et al., 2014; Greenfield et al., 2017).

Similarly to other chorusing organisms, fish chorus is thought

to be related to reproduction, specifically mating (Brantley and

Bass, 1994; Koenig et al., 2017). Studying fish chorusing has

allowed for the mapping of spawning areas and identification

of spawning season, which has aided in effective management

of fish species, and assessment of phenological shifts in chor-

using due to climate change (Luczkovich et al., 1997; Aalbers,

2008; Tellechea et al., 2011; Rowell et al., 2012; Zemeckis

et al., 2014; Borie et al., 2021; Siddagangaiah et al., 2022).

Therefore, characterizing fish choruses within soundscapes is

important as it can help identify mating seasons, essential habi-

tats, species interactions, and distributions (Gannon et al.,
2008; Luczkovich et al., 2008).

Historically, many analyses of fish sounds have utilized

manual classification, which has become increasingly unfea-

sible. Fish choruses are difficult to identify manually due to

their often-diffuse acoustic characteristics as well as co-

occurrence with other signals. In our increasingly noisy

global ocean (Hildebrand, 2009; Duarte et al., 2021), since

fish choruses are low frequency, they are often intertwined

with vessel noise (Slabbekoorn et al., 2010; Popper and

Hawkins, 2019). Also, the co-occurrence of multiple choruses

in time and frequency makes manual analysis challenging.

Additionally, manual classification of large acoustic datasets

requires an expert human analyst with in-depth knowledge of

the acoustic context of fish chorus at each recording location.

Moreover, manually analyzing years of acoustic data for fish

choruses is labor intensive, costly, and somewhat subjective.

Thus, an unsupervised approach would greatly improve reli-

ability, efficiency, and capacity of fish chorus analysis in

large acoustically diverse datasets. While some automated

methods exist (Sattar et al., 2016; Lin et al., 2017; Lin et al.,
2018; Lin, 2020; Butler et al., 2021), there is a need for an

unsupervised automated technique that works well at multiple

sites and over long temporal scales, when multiple choruses

and vessel noise are present, and when chorusing is faint.

Building on current methods, we have developed a new

unsupervised automated method, called SoundScape

Learning (SSL), to separate fish chorus from the soundscape

through integration of randomized robust principal compo-

nent analysis (RRPCA), unsupervised clustering, and a neural

network. RRPCA uses randomized matrix decomposition to

produce low rank (chronic) and sparse (transient) events.

Data were essentially “denoised” of transient events using the

RRPCA process: fish chorus and other chronic sources were

aggregated into a low rank matrix, while less common signals

like sonar, vessel cavitation, whales, and other biologic

sounds were separated into a sparse matrix. Rather than rely-

ing on a human analyst to assign class-types manually, with

potentially high error and inconsistency, an unsupervised

clustering algorithm was used to identify multiple signal

types (Frasier et al., 2017). Deep machine learning algo-

rithms have proven successful in classifying large passive

acoustic datasets for marine mammals and fish (Bittle and

Duncan, 2013; Frasier et al., 2017; Gibb et al., 2019; Lin

et al., 2019). Thus, the clusters were used to train a neural net

classifier (Frasier, 2021), to classify novel data from 14

unique sites representing a total of 5.3 yrs of acoustic data.

By applying SSL to a spatially and temporally extensive

dataset, we were able to evaluate its ability to separate fish cho-

rus from soundscape and uncover new biologically relevant

insights. SSL was applied to a fish chorus present throughout

southern and central California. The fish chorus has not been

identified yet to species level; however, it is the same chorus

reported by Pagniello et al. (2019). This chorus could be from

pelagic and/or diel vertically migrating fish, given its temporal

alignment with diel vertical migration (McCauley and Cato,

2016). SSL was also applied to a complex soundscape within

Monterey Bay National Marine Sanctuary (MBNMS), which

had multiple co-occurring choruses and vessel noise. Complex

and simpler soundscapes both have a mixture of biotic, anthro-

pogenic, and abiotic sounds, but here, complex soundscapes are

specifically defined as those with multiple co-occurring sound

sources overlapping in time and frequency, while simpler

soundscapes also have multiple sound sources present, but they

do not overlap in time and frequency. Through applying SSL

across sites and varying soundscape conditions, we evaluate the

utility of SSL under familiar and novel conditions. While this

study focused on fish chorus, SSL is widely applicable to signal

processing tasks which require separation and distinction of tran-

sient and chronic signals.

II. METHODS

A. Overall workflow

The SSL workflow broadly includes feature prepara-

tion, denoising, partitioning, and classification phases

(Fig. 1). This workflow consists of five main steps: (1) cal-

culating a matrix of sound levels from long-term spectral

averages, (2) denoising and decomposition using RRPCA,

(3) unsupervised clustering of denoised features to identify

distinct classes, (4) deep network training, and (5) classifica-

tion of novel data. Below, we provide a general description

of each step and its utility, followed by specific parameteri-

zation details used in this application.

1. Data collection

Acoustic data were collected using high frequency

acoustic recording packages (HARPs) at 14 sites (some with

multiple deployments) throughout southern California and

one SoundTrap in Monterey Bay National Marine Sanctuary

(MBNMS) at various depths (Fig. 2). Sites were named after

location, in which San Diego Trough was abbreviated to

“SDT,” Southern California to “SOCAL,” and Monterey

Bay to ‘“MB,” and acronyms following the underscore

allow for further differentiation between sites. HARPs and

SoundTraps (SoundTrap ST500, Ocean Instruments,

Auckland, NZ) are long-term, seafloor-mounted acoustic

recorders that consist of a hydrophone, recording equipment,

batteries, flotation, and release (Wiggins and Hildebrand,

2007; SoundTrap, 2022). HARPs are custom acoustic
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recording devices designed and built at Scripps Institution

of Oceanography and consist of a high frequency stage

(ITC-1042, 2022) and a low frequency AQ1 (AQ1, 2022)

bundle (Wiggins and Hildebrand, 2007). Instruments were

moored 1–3.5 m from the ocean floor with a subsurface float

and an acoustic release. The SoundTrap500 sampled continu-

ously at 48 kHz and HARPs at 20 or 200 kHz, at various

depths between �60 to 1000 m between the years 2006 and

2019 (Table I). HARP hydrophones have an approximate

sensitivity of �202.5 dB re V/lPa, �50 dB of gain, and 5 V

of dynamic range. SoundTrap500s have an approximate full

system sensitivity of �175 dB re V/lPa, maximum clip level

around 173 dB re 1 lPa, and 2 V of dynamic range. HARPs

and SoundTraps were calibrated in the laboratory to provide

frequency-dependent sensitivity (Wiggins and Morris, 2019).

Representative data loggers and hydrophones were also cali-

brated at the U.S. Navy’s Transducer Evaluation Center facil-

ity to verify the laboratory calibrations.

2. Preparing data for analysis: Sound level matrices

Analyzing 5.3 yrs of raw XWAV (Triton Github, 2023)

time series files was not practical, so data were compressed

for overview in long-term spectral averages (LTSAs).

Instead of using short duration spectrograms, successive

spectra were calculated and averaged together, and then

arranged sequentially to provide a time series of the spectra.

LTSAs of each acoustic deployment were created, using

1000 point fast Fourier transforms (FFTs), Hanning win-

dows, no overlap, and 1 s and 1 Hz resolution, using

Triton’s “Soundscape LTSA package,” a custom MATLAB

(MathWorks, Natick, MA) software (Triton Github, 2023;

Wiggins and Hildebrand, 2007). Using the LTSAs, power

spectral density (PSD) median values were computed for

20 Hz bins from 20–1000 Hz, for successive 20 min bins

using the same Soundscape LTSA package. The output of

the data preparation process was a sound level (PSD) matrix

describing the soundscape for each deployment, considered

the “original matrix.” Data were separated into neural net

development sets, and novel datasets with appropriate spa-

tial spread to adequately train and apply the network

(detailed in Table I).

FIG. 1. Overview of the SSL workflow including data preparation (calculat-

ing matrix of sound levels from long-term spectral averages), RRPCA

(denoising of transients), unsupervised clustering (identifies distinct clas-

ses), neural network training, and classification on novel data. Light gray

boxes on the right side of the schematic represent output, and white box rep-

resents sparse matrix which is not used in later analysis.

FIG. 2. (Color online) Site maps including (A) SoundTrap500 deployed in

Monterey Bay National Marine Sanctuary, (B) HARPs deployed throughout

Southern California. Yellow, neural net development sites; red, novel sites;

orange, sites used for neural net development and novel classification; pur-

ple, long-term site. The range of distances between the 11 San Diego

Trough southern-most sites and their nearest neighboring sites within the

array was 3.16–14.24 km, and the SDT array itself was 98.7 km from the

western most hydrophone (site G).
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3. RRPCA: Denoising the data of transients

RRPCA was utilized to decompose the original matrix

into low rank and sparse matrices, using Rstudio’s (Rstudio

Team, 2022) rrpca package (Erichson et al., 2019).

RRPCA was applied to each original matrix between the

frequency range for most fish choruses (and the target cho-

rus) from 60–800 Hz to avoid low frequency noise and var-

iation in sound level roll-off at �850 Hz in some

deployments due to data decimation. The sparse matrix

was visually scanned to make sure it did not include the

fish chorus of interest, and to generally understand types of

transient signals included. Chronic fish chorus was sepa-

rated into the low rank matrix while transient acoustic sig-

nals like vessel cavitation noise, whales, sonar, etc., were

separated into the sparse matrix.

4. Unsupervised clustering: Creating distinct classes
of chorus and noise

Utilizing the transient-denoised low rank matrix from

development deployments, a MATLAB-based unsupervised

clustering toolkit called “Cluster Tool” within Triton was

utilized to identify distinct classes of chorus and noise

(Frasier, 2021). Each development dataset was analyzed

independently, and similar classes were manually pooled

across datasets to form the neural network development set.

A Euclidean distance score was computed between all possi-

ble pairs of the 20 min median PSD vectors in the develop-

ment dataset utilizing the MATLAB function pdist [as

computed by Eq. (1)]:

D x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

xi� yið Þ2
s

: (1)

The distance between each pair of 20 min median PSD vec-

tors was converted into a similarity metric S, such that

S ¼ exp �Dð Þ: (2)

This resulted in a distance matrix, which can be interpreted

as a network in which each PSD estimate is a “node.” and

connections between nodes (edges) are assigned a length

based on the nodes’ similarity. Similar nodes connected by

short edges cluster together in this network while dissimilar

nodes are pushed apart. After similarities were calculated

between all nodes, edge pruning was utilized to reduce the

size of the distance matrix input into the clustering algo-

rithm, in which only the highest similarity scores were

retained for clustering. We used the Chinese Whispers

(CW) clustering algorithm (Biemann, 2006) to automati-

cally identify groupings within the network. This algorithm

starts by assuming that each node is its own cluster, and iter-

atively reassigns each node to the cluster to which it is most

strongly connected until reassignments cease. This process

partitioned the dataset into multiple categories which was

used to train a neural network to recognize these categories

in novel datasets.

Distance metrics were computed by comparing PSD

vectors over a frequency range from 60–800 Hz in 20 Hz

bins. During clustering, PSD values were normalized

between values of 0–1 for each 20 min bin, where the lowest

spectrum level bin was set to 0, and the highest spectrum

level bin was set to 1. Cluster normalization resulted in

larger and cleaner clusters. Edge pruning thresholds varied

from 80%–90% as needed to isolate one or more clusters

containing chorus. Clusters containing fewer than 30 nodes

were discarded as they generally contained low quality,

TABLE I. Site information for acoustic recordings. Note that some sites have multiple deployments which are reflected in “recording date.”

Neural net

development/novel sets Site

Sampling

rate (kHz) Recording date Depth (m) Location

Development SDT_BF 20 07/27/2017-11/13/2017 915 32�51.72 N, 117�34.51 W

SDT_DP 20 08/03/2017-11/15/2017 609 32�51.47 N, 117�27.20 W

SDT_HP 20 07/31/2017-11/13/2017 1051 32�45.64 N, 117�39.29 W

SDT_WQ 20 07/31/2017-11/13/2017 285 32�46.32 N, 117�46.91 W

SOCAL_P 200 09/23/2009-12/03/2009 479 32�53.60 N, 117�22.71 W

SOCAL_A 200 07/10/2007-10/21/2007 1112 33�15.03 N, 118�14.99 W

SOCAL_T 200 07/08/2017-01/17/2018 814 32�53.20 N, 117�33.50 W

Novel SDT_PR 20 08/03/2017-11/15/2017 725 32�54.87 N, 117�29.81 W

SDT_SL 20 07/27/2017-11/15/2017 943 32�47.93 N, 117�34.51 W

SDT_SW 20 07/31/2017-11/13/2017 285 32�42.51 N, 117�45.81 W

SDT_SZ 20 08/03/2017-11/15/2017 823 32�49.68 N, 117�30.95 W

SDT_GR 20 07/31/2017-11/13/2017 1068 32�49.23 N, 117�41.80 W

SOCAL_A 200 09/01/2006-11/07/2006 335 33�15.10 N, 118�15.14 W

LJ_P 200 05/30/2017-09/29/2017 517 32�53.05 N, 117�23.95 W

LJ_P 200 05/27/2013-09/05/2013 521 32�53.49 N, 117�24.82 W

SOCAL_G 200 07/23/2007-10/22/2007 480 32�55.61 N, 118�37.25 W

SOCAL_T 200 09/28/2016-12/13/2016 900 32�89.86 N, 117�60.98 W

SOCAL_T 200 03/03/2017-07/06/2017 825 32�53.21 N, 117�33.36 W

MB02 (SoundTrap) 48 04/08/2019-08/11/2019 68 36�38.97 N, 121�54.50 W
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highly variable events that were deemed unsuitable for clas-

sifier training. All chorus clusters from each of the seven

training deployments were pooled into one chorus class and

all “noise” clusters were pooled into a single noise class for

later use in neural network training.

5. Comparing cluster quality of low rank vs original
matrices

To evaluate whether RRPCA improved separation of

chorus from transient signals, cluster quality of the original

vs the low rank matrix was compared using two metrics: the

Calinksi–Harabasz index and silhouette scores. Calinksi–

Harabasz (CH) cluster evaluation (Calinski and Harabasz,

1974) measures the sum of inter- and intra-cluster dispersion

for all clusters using the formula

CH ¼ tr Bkð Þ
tr Wkð Þ �

nE� k

k � 1
: (3)

For a set of data, E, where nE is the number of data points, k
is the number of clusters, tr(Bk) is trace of the between

group dispersion matrix and tr(Wk), of the within-cluster

dispersion matrix, defined by

Wk ¼
Xk

q¼1

X
x2Cq

x� cqð Þ x� cqð ÞT ; (4)

Bk ¼
Xk

q¼1

nq cq � cEð Þ cq � cEð ÞT : (5)

In which nq is the number of points in cluster q, cq is the

center of cluster q, cE is the center of E, and T is the number

of iterations. Larger CH values indicate increased density

within clusters and stronger separation between clusters.

Additionally, the CH metric finds the ideal number of clus-

ters. CH scores were calculated for the low rank and original

matrix of SDT_BF using the evalclusters function in

MATLAB.

Silhouette plots were used to visualize differences in

original matrix and low rank matrix cluster quality.

Silhouette scores range from –1 to 1, where scores close to 1

are best, close to 0 indicate weak separation between clus-

ters, and negative are likely misclassifications. The

Silhouette score (SS) was calculated using the mean intra-

cluster (i) and near-cluster distance (n) for each sample; the

Silhouette score for a sample is defined by

SS ¼ n� i

max i; nð Þ : (6)

Silhouette scores were calculated for original and low rank

matrices using the silhouette function in MATLAB to create

plots that visualize differences in cluster quality.

6. Neural network for classification of novel data

In the final step of this process, a neural network was

trained to distinguish between noise and chorus classes as

aggregated by the unsupervised clustering process. The out-

put from the unsupervised clustering algorithm was orga-

nized into training, testing, and validation sets using 60% of

the development dataset for training, 30% for testing, and

10% for validation, with a maximum training set size of

1000 detections (Frasier, 2021). This 60/30/10 ratio is typi-

cal, and the maximum training set size was 1000 detections

to utilize all chorus examples without excessive resampling.

The total number of examples of each class in each subset

were balanced to contain the same number of examples of

chorus and noise, respectively, so that the neural network

was not biased towards chorus or noise (He and Garcia,

2009). Additionally, 20 min of temporal separation were

required between training and testing examples, so that the

neural network was not testing on the same examples with

which it had been trained (Jones, 2019).

Training the neural network: A binary classification

network (yes or no to chorus presence) was trained using the

classes identified with the unsupervised clustering process,

utilizing a neural network toolbox that draws on MATLAB’s

Deep Learning Toolbox (Frasier, 2021). The network con-

sisted of a 512-node input layer and a 2-node softmax output

layer, with four fully connected 128-node hidden layers in

between, and 50% dropout between layers. Leaky rectified

linear (ReLu) unit activations (Maas et al., 2013) were used

and the network was trained over 15 epochs with a batch

size of 50 events and constant learning rate of 0.0003. This

design was utilized as it is straightforward to implement in

most neural network frameworks.

Classifying novel data using trained neural network
and assessing performance: The trained neural network was

applied to low rank matrices computed from novel data. The

neural network labels were manually reviewed as overlays

on decimated LTSAs (lower resolution for faster manual

screening) to assess label accuracy. Automated labels were

manually reviewed for two novel deployments: SDT_PR,

which had strong chorusing with few overlapping signals (in

frequency) and MB02, which had great soundscape com-

plexity with three overlapping choruses (overlapping in time

and frequency) and ample noise. True and false positives

and negatives were tabulated based on the manual correc-

tions. Accuracy, recall, and precision were then calculated

for both deployments using the equations:

Accuracy ¼ true positivesþ true negatives

all detections
; (7)

Recall ¼ true positives

true positivesþ false negatives
; (8)

Precision ¼ true positives

true positivesþ false positives
: (9)

7. Timeseries analysis

To illustrate the potential of this method for long-

term monitoring, the neural network was used to label

chorus throughout over a year of data at site SOCAL_T.
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Chorus presence was plotted in 20 min bins, and overlaid on

local astronomical sunset and sunrise times with the

MATLAB sunrise package (Beauducel, 2019).

III. RESULTS

A fish chorus of interest was initially identified in the

San Diego Trough Soundscape (Fig. 3) during manual

review of a subset of data. Manually identified chorus events

occurred at night with increased intensity at sunset (�03:00

UTC) and sunrise (�13:00 UTC) (Fig. 3). Within the sound-

scape, instances of variable broadband noise were routinely

present, mostly from close vessel encounters [Fig. 3(A)]

(hours 16–24), primarily during daytime, and below 200 Hz

(Fig. 3). Additionally, there was a low frequency chorus that

often occurred just after sunset, between 20 and 200 Hz

[Fig. 3(A)] (hours 3–7).

RRPCA separated the original spectral data at San

Diego Trough into low rank and sparse matrices (Fig. 4).

Chronic fish chorus was separated into the low rank matrix,

and transient events were separated into the sparse matrix

(Fig. 4). In the low rank and original spectra, the fish chorus

appears as two peaks of increased amplitude between 300

and 800 Hz, with lower variance in the low rank matrix

[standard deviation (sd) of spectra ¼ 5.03] than the original

matrix (sd ¼ 5.33) (Fig. 4). Sparse matrix visualizations

were confirmed to be transient events with the majority of

energy below 200 Hz (Fig. 4). Thus, the RRPCA step

FIG. 3. (Color online) Long-term spectral average (LTSA) at San Diego Trough

showing chorus within the larger soundscape over (A) 24 h, (B) 1 week. Chorus is

at�250–850Hz with increased intensity at sunset and sunrise (white boxes around

chorus). Colored bar at top of (A) night as black, astronomical twilight as gray,

and day as white. Time in UTC.

FIG. 4. (A) (Color online) Spectra for San Diego Trough in which each line represents 20 min binned PSD median values of original (sd ¼ 5.33), low rank

(sd ¼ 5.03), and sparse matrices (sd ¼ 0.95) for 1 week of the SDT_BF deployment (magenta box around chorus). (B) LTSAs of 20 min binned PSD median

values of original, low rank, and sparse matrices for the same week of the SDT_BF deployment (hotter color represents stronger PSD values).
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denoised the data of transient events, and the low rank

matrix was utilized for later analysis.

The unsupervised clustering algorithm identified distinct

classes of chorus and noise. The total number of clustered

chorus detections increased by a factor of two when using

the low rank matrices as input rather than the original matrix

[Fig. 5(A)]. Additionally, there were less clustered noise

detections when using the low rank matrix as input rather

than the original matrix [Fig. 5(B)]. Silhouette plots illus-

trated that low rank matrix chorus clusters included a larger

number of chorus-positive bins than those of the original

matrix, and Calinski–Harabasz index indicated that low rank

matrix clusters resulted in denser and better separated clus-

ters [Fig. 5(C)]. Note that for deployment SDT_HP, the noise

cluster appeared to include some chorus, so the noise cluster

was omitted from the training set. This may have been due

to the low PSD levels of the chorus relative to other high

PSD level noise at this site, and the lack of strong chorus

examples to initiate cluster formation. For SOCAL_35_P, a

cluster of blue (Balaenoptera musculus) and fin whale

(Balaenoptera physalus) calls (dominant energy <100 Hz)

was formed when fish chorusing was absent. This cluster

was omitted from the training set. For SOCAL_15_A, no

chorus was detected, so the entire deployment contributed to

the noise class.

The neural network classified chorus and noise on testing

data with an overall 94.6% accuracy, in which signal inten-

sity impacted classification accuracy (Fig. 6). The neural net-

work assigned higher predicted probability values to chorus

labels when the chorus magnitude was stronger [Fig. 6(A)].

Noise at and below 200 Hz was a notable deciding factor for

classification, with predicted label probability decreasing as

<200 Hz noise magnitude decreased [Fig. 6(A)]. Some low

predicted probability classifications labeled as noise appear to

be misclassified chorus [Fig. 6(A)], right side of concatenated

spectrum). There were more misclassifications of chorus

(5%) than misclassifications of noise (0.4%), but those

misclassifications generally were rare [Figs. 6(B) and 6(C)].

FIG. 5. (Color online) Spectra of concatenated clusters for original and low rank matrices showing number of 20 min binned detections vs frequency for (A)

original and low rank matrix chorus clusters, (B) original and low rank matrix noise clusters, (C) silhouette plots for original and low rank matrix clusters.

Blue, chorus clusters; gray, noise clusters. Scores close to 1: densest clusters with best separation, 0: overlapping clusters, –1: potential misclassifications.

(CH index, original matrix: 1.27 x 103, 3 clusters ideal vs low rank matrix 2.31 x 103, 4 clusters ideal). Dashed vertical lines indicate separation between dis-

tinct clusters.
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This tendency towards chorus “false negatives” rather than

chorus “false positives” led to more conservative estimates

of chorusing behavior, which was beneficial in this ecologi-

cal application as it was not likely to include false detections

of chorus even if a small number of true chorus detections

were lost. Also, many of the detections that the network

thought were misclassifications of chorus, appear to actually

be chorus detections which were erroneously included in the

noise cluster test set [Fig. 6(B)], and were actually correctly

labeled by the network. Essentially, the neural network clas-

sifier found inaccuracies in the ground truth. Overall, the

neural network’s accuracy of 94.6% on the training set

instilled confidence that the neural network was trained ade-

quately and was performing well [Fig. 6(C)].

The neural network successfully classified chorus and

noise in novel data (Fig. 7). For the simpler SDT_PR sound-

scape with just two choruses present (which did not overlap

in frequency binning, but did co-occur in time binning), pre-

cision, recall, and accuracy metrics were higher [Fig. 7(A)],

than the more complex MBNMS soundscape that had multi-

ple choruses present (which co-occurred in time and fre-

quency binnings) and was geographically separated from

the deployment with which the neural network was trained

[Fig. 7(B)]. The week-long SDT_PR LTSA showed that the

neural network consistently labeled the sunset and sunrise

choruses, at which time, the chorus magnitude was stronger,

as well as daytime noise [Fig. 7(A)]. For the 48 h SDT_PR

LTSA, within the nighttime chorus, noise was detected,

which was likely from a lower frequency fish chorus of

unknown species (�20 to 200 Hz) that started right after the

sunset chorus and lasted for approximately 5 h [Fig. 7(A)].

The neural network skipped over broadband instances of

noise at the �17th hour, and between 38–43rd hours, illus-

trating the network’s ability to bypass broadband noise, and

not mistake it for fish chorus [Fig. 7(A)]. For MBNMS, the

network labeled sunset chorus and no sunrise chorus, which

was consistent with manual review of chorusing behavior at

this site [Fig. 7(B)]. A different nighttime chorus appearing

as horizontal banding at 100, 200, 300, and 400 Hz, pro-

duced by the plainfin midshipman (Porichthys notatus)
(McIver et al., 2014), together with ample small vessel noise

at this location masked potential occurrence of our target

chorus at sunrise [Fig. 7(B)]. An additional nighttime chorus

occurring at sunset at �200 Hz produced by bocaccio

(Sebastes paucispinis) (Sirovic and Demer, 2009) likely

decreased labeling precision at sunset [Fig. 7(B)].

Time series analysis at site SOCAL_T elucidated diel

and seasonal periodicity. The chorus began in May and

ended in November (Fig. 8). Although we did not have two

full years of coverage, the chorus likely ended around the

same time, albeit slightly later in 2017 as opposed to 2016

(Fig. 8). Chorus presence was predominantly nocturnal,

beginning at sunset and ending at sunrise (Fig. 8). In the

beginning of the season, chorusing occurred at sunset and

sunrise, then became more continuous through the night,

and at the end of the season, waned to presence at just sunset

and sunrise once again (Fig. 8).

IV. DISCUSSION

RRPCA worked well to “denoise” the matrix of tran-

sient events (Fig. 4) for more accurate classification. In the

FIG. 6. (Color online) (A) Spectra of neural net classification output on test

data, with predicted probability values on top of the figure. (B) Spectra of

bins counted as network misclassifications of chorus and noise for test data.

(C) Confusion matrix of test data in which the output class are network clas-

sified labels and the input class are true labels. Diagonal green cells repre-

sent observations that were correctly classified, and off diagonal red cells

represent incorrectly classified observations. Both the number of observa-

tions and percentages of the total observations are shown in each cell. The

far-right column shows precision, or percentages of all examples that the

network classified to belong to each class that were correctly (top green per-

centage) and incorrectly (bottom red percentage) classified. The bottom row

shows recall, or percentages of all examples belonging to each class that

were correctly (top green percentage) and incorrectly (bottom red percent-

age) classified. The bottom right cell (dark gray) shows overall accuracy.
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week-long LTSAs, there was no noticeable residual energy

from the chorus left in the sparse matrix, which is beneficial

for those who might want to use this method to quantify sig-

nal magnitude post-separation. In our application, PSD

median values computed over 20 Hz and 20 min binning

allowed for clean separation of fish chorus from transient

events. However, the time and frequency binning (e.g.,

hourly third octave band levels), and the use of other averag-

ing metrics (e.g., mean values), could be altered to target a

signal of interest in other applications. Smaller standard

deviation values in the low rank matrix spectra in compari-

son to the original matrix confirmed that the variance was

reduced following the removal of transients by RRPCA.

This result was advantageous as it mirrors the common prac-

tice of applying standard principal component analysis

(PCA) prior to a clustering algorithm, as it is believed that

denoising improves clustering results (Ding and He, 2004;

Li et al., 2021). Computationally, RRPCA is roughly five

times faster than traditional RPCA (Erichson et al., 2019),

which was beneficial in this application with large acoustic

datasets.

Implementation of RRPCA prior to clustering improved

the size and quality of chorus clusters (Fig. 5). Overall, in

the spectra of concatenated clusters [Figs. 5(A) and 5(B)]

and the silhouette plots, which show number, size, density,

and separation of clusters [Fig. 5(C)], the low rank matrix

produced more detections of fish chorus, and higher-density

clusters with improved separation [Fig. 5(C)], in comparison

to the original matrix. Chorus detections were doubled in

the low rank matrix (vs original) due to RRPCA [Figs. 5(A)

and 5(C)]. This was likely because the unsupervised cluster-

ing was able to detect fainter chorus [Fig. 5(A)] with less

noise in the soundscape [Fig. 5(B)]. If the RRPCA step was

skipped, and the original matrix was utilized instead, more

instances of chorus would be pulled into the noise cluster,

likely due to the inclusion of transient noise.

The neural network made classification decisions on the

test set based on the intensity of chorus and noise, and over-

all showed strong accuracy (Fig. 6). The neural network

found instances of chorus that were incorrectly clustered in

the training set as noise (which were likely nodes at the

edges of the clustering network) [Fig. 6(B)]. Thus, the few

mistakes that were included in the training set did not dis-

rupt the neural network’s classification, illustrating that the

deep learning algorithm can recognize general patterns

across many examples. The neural network also detected

chorus in novel data across a diverse set of soundscapes of

varying complexity. In this case, site SDT_PR was consid-

ered less complex because it had overlap of multiple cho-

ruses in time but not frequency. The MBNMS site was

considered to be more complex, due to overlap of multiple

choruses in time and frequency (Fig. 7). The network

achieved high precision, recall, and accuracy values for the

SDT_PR deployment, with less vessel noise and minimal

other fish chorusing (which overlapped temporally but not in

frequency). The neural network likely labeled instances of

noise within the nighttime chorus due to decreased magni-

tude of the chorus of interest during the time of the <200 Hz

FIG. 7. (Color online) Original LTSAs of (A) San Diego Trough deployment SDT_PR (precision: 97.4%, recall: 99.3%, accuracy: 99.2%), (B) Monterey

Bay deployment MB02 (precision: 69.9%, recall: 85.5%, accuracy: 96.5%) with neural network classification labels (20 min bins) for chorus (white), noise

(magenta), visualized over (top) 48 h and (bottom) 1 week.
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low frequency chorus (just after sunset) [Fig. 7(A)]. No

unique cluster was formed during the training set develop-

ment step for this chorus, likely because the clustering metric

ignored frequency bins below 60 Hz to avoid low frequency

noise (fragmenting this signal), or because of vessel noise

dominance at the same frequency range. Nonetheless, it was

beneficial that this low frequency chorus was labeled as noise

as it was not the chorus of interest. In future studies, addi-

tional chorus classes could be added to the analysis process.

The waxing and waning of various chorus intensities, and

differing frequencies of these choruses were presumably due

to acoustic niche partitioning in time and frequency (Krause,

1993). Acoustic niche partitioning is the result of various

species in acoustic communities sharing limited soundscape

bandwidth to limit competition and effectively communicate

(Weiss et al., 2021).

The neural network worked fairly well for the Monterey

Bay National Marine Sanctuary (MBNMS) soundscape,

which was more complex and considerably outside the

range of southern California deployments with which the

network was trained. The MBNMS deployment was consid-

ered more complex due to multiple overlapping fish cho-

ruses (in time and frequency) and higher occurrence and

amplitude of vessel noise [Fig. 7(B)]. Decreased labeling

precision was likely the result of chorus misclassification as

noise when bocaccio chorus (�200 Hz) occurred at the same

time as the sunset chorus [Fig. 7(B)]. This was because the

low frequency bocaccio chorus would have increased

median PSD values at low frequencies, appearing far differ-

ent from trained chorus examples in which intensity was

strongest between 300 and 600 Hz. Boccacio chorus was not

present in the training set, and performance could likely be

improved by adding Boccacio examples during classifier

training. Additionally, plainfin midshipman chorus and

ample small vessel noise at this location masked potential

occurrence of our target chorus at sunrise [Fig. 7(B)].

Additionally, differences between the HARPs and

SoundTrap500 hydrophones (especially in gain) could have

impacted neural network performance. For the MBNMS

deployment, recall was notably higher than precision, as the

neural network performed better at labeling all instances of

true chorus (low false negative rate), but had a higher false

positive rate (instances of noise labeled as chorus). Future

work could consider inclusion of multiple chorus classes,

and could explore the use of multilabel overlapping cluster-

ing analysis (Xia et al., 2016; Peng and Liu, 2018) to

increase the neural network’s precision and accuracy for

soundscapes in which multiple choruses all occur simulta-

neously in time and frequency.

Through this automated method, we were able to gain

insight on the temporal nature of this fish chorus at a long-

term monitoring site SOCAL_T within the San Diego

Trough. We found that the fish chorus occurred at night,

with increased intensity at sunset and sunrise [Fig. 8]. Note

that the few detections during the daytime were often the

result of misclassifications of the neural network. The noc-

turnal nature of this chorus was consistent with other fish

species (Helfman, 1986; Locascio and Mann 2011; McIver

et al., 2014; Staaterman et al., 2014; Rupp�e et al., 2015),

and the increased intensity at sunset and sunrise has been

noted for Bocaccio rockfish (Sirovic and Demer, 2009) as

well as for various bird species (Thomas et al., 2002; Bruni

et al., 2014). There was no chorus detected from

March–May, which is consistent with manual review of

those time periods in the LTSA, and the neural network was

confirmed to be working through labeling these times as

“noise”, with no misclassifications. The chorus was present

from May–November, which could indicate that the mating

period of this fish species begins in late Spring and ends in

late Fall (Fig. 8). The connection between fish calling and

spawning has been noted in goliath grouper (Epinephelus
itajara) and plainfin midshipman, in studies in which eggs

were collected on nights of calling, and not collected on

nights without calling (Brantley and Bass, 1994; Koenig

et al., 2017). The pattern of non-continuous nighttime cho-

rus in the beginning of the season, with chorus at sunset and

sunrise, more continuous chorusing mid-season, and then

discontinuous chorusing at the end of the chorusing season,

could indicate times of peak spawning during

August–September. The chorusing season lines up with

FIG. 8. (Color online) Diel presence of fish chorus (purple) as detected

using SSL approach in UTC at site SOCAL_T in 20 min bins. Yellow shad-

ing represents daytime; blue shading represents “no effort,” when hydro-

phones were not deployed.
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known distribution, nighttime feeding, summer mating sea-

son, and reverse diel vertical migration habits of queenfish,

Seriphus politus, making this species a possible candidate

(D’Spain et al., 2013). Future work might apply these meth-

ods across a wider range of recording locations to learn

more about the spatial nature of this chorus (coastal and off-

shore), and whether this chorus is indeed from queenfish, or

from another croaker, and/or pelagic or diel vertically

migrating fish.

While this study focused on fish chorus, this method is

widely applicable to separate other signals when there is a

chronic signal present, regardless of whether the chronic sig-

nal is or is not of interest. For instance, one could analyze

the sparse matrix to learn about transient marine signals,

like explosions, vessel noise, sonar, and other biologics. In

one deployment, a small cluster of blue and fin whales was

formed, and through simply altering time/frequency bin-

nings, one could better target separation of these whale calls

or other biological calls of interest. SSL is a methodological

advance that is a key step towards advancing marine sound-

scape analysis more broadly (as outlined by McKenna et al.,
2021), allowing for better autonomous monitoring of the

health of the ecosystem and species. SSL could also be

applied to terrestrial PAM sites. Applying SSL to bird, frog,

and bat acoustics would likely be fruitful, especially for

frogs, in which there is a current need for machine learning

tools (Kitzes et al., 2021; Larsen et al., 2021). Outside of

acoustics, any other ecological time series studies in which

data can be represented as a large matrix (i.e., imagery,

video) could apply these methods to easily separate signals

of interest over time.

V. CONCLUSION

We successfully produced SSL, a novel unsupervised

automated method to separate chronic fish chorus from other

chronic (vessel noise) and transient acoustic signals. SSL

was successfully applied across long temporal scales (5.3

yrs) and in diverse soundscapes (14 locations off California

coast). In sum, RRPCA was utilized to separate the original

matrix into low rank (chronic) and sparse (transient) matri-

ces, and by extension, eliminate transient sounds. The low

rank matrix was then clustered using an unsupervised clus-

tering algorithm, which created unique chorus and noise

classes. RRPCA was shown to significantly improve the size

and quality of the clusters of interest. The clusters were then

utilized to train a neural network for automatic classification

on novel and diverse soundscapes. Through this application.

we learned that the fish chorus was largely nocturnal in

nature, with distinct seasonality. While this example was

focused on separating fish chorus from soundscape, SSL is

widely applicable to other large datasets across marine and

terrestrial ecosystems, in which there is a need to automati-

cally separate, detect, and classify signals. In the acoustic

realm, manually analyzing data is becoming increasingly

untenable with the collection of decades of data. It is our

hope that this method will aid others to automatically

separate and detect signals with increased ease, with special

appreciation for how much we can learn from marine

soundscapes.
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